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1. Introduction

The Conditional Gradient (CG) Method, also
known as the Frank-Wolfe algorithm, is a fun-
damental technique in constrained optimization,
developed by Marguerite Frank and Philip Wolfe
in 1956. It is particularly useful for minimiz-
ing convex functions over complex convex con-
straint sets where projection is computationally
challenging. Recent explorations of CG method
on Riemannian manifolds [1] and the General-
ized Conditional Gradient (GCG) method have
been detailed in various studies [2]. Notably, the
GCG method’s application to composite multi-
objective optimization on Riemannian manifolds
has also been discussed, but the critical aspect
of solving subproblems remains underexplored.
This work investigates the GCG method on Rie-
mannian manifolds, focusing on three types of
step size and the implementation of subproblem
solutions.

2. The generalized conditional gradi-
ent method on Riemannian mani-
folds

We consider the following unconstrained vector
optimization problem:

F(z) := f(z) + g(x)
re X,

min
s.t. (1)
where X C M is a compact and geodesically con-
vex set and F': M — R is a composite function
where f: M — R is continuously differentiable
and g: M — R is a proper, closed, geodesically
convex and lower semicontinuous (possibly non-
smooth) function with compact domain.

A Riemannian manifold M is a manifold en-
dowed with a Riemannian metric (9;,0.) +
Nz, 02)z € R, where 1, and o, are tangent vec-
tors in the tangent space of M at z. The tangent
space of a manifold M at x € M is denoted as
T, M, and the tangent bundle of M is denoted as
TM:={(z,d) | d € TyM,z € M}. The norm of
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n € Ty M is defined as ||n]|z := /(n,n)z. For a
map F : M — N between two manifolds M and

N,DF(z) : TyM — TN denotes the deriva-
tive of F at x € M. The Riemannian gradient
gradf(x) of a function f: M — R at z € M is
defined as a unique tangent vector at x satisfying
(gradf(z),m)e = Df(z)[n] for any n € To M.

In Euclidean space, the CG method method
aims to minimize a convex function f(z) over a
convex set X. At each iteration k, the method
solves a linear approximation of the original prob-
lem by finding a direction s* that minimizes the
linearized objective function over the constraint
set X:

k . k
s = argISIg)rfl(Vf(:c ),S).

Then, it updates the current point z* using a step

size \; along the direction s* — z*:

P = gk A (8P — 2F).

For composite functions of the form f(z) =
h(z) + g(z), where h is smooth and g is convex,
the CG method can be adapted to handle the
non-smooth term g. The update step becomes:

41 = argmin(Vh(a"), s) + g(s).

The step size A\ can be chosen using various
strategies. The CG method is particularly use-
ful when the constraint set X is complex, mak-
ing projection-based methods computationally
expensive.

Compared to the update iterations in Eu-
clidean space, the process in the Riemannian set-
ting is generalized as

2" = R (\pd¥), fork=0,1,2,...,
where d* is a descent direction, \j is a step size,
and R is a retraction that projects points from

the tangent space of the manifold onto the man-
ifold itself.



Then we can give our algorithm.

Algorithm 1 Riemannian GCG method

Step 0. Initialization:

Choose 2 € X' and initialize k = 0.

Step 1. Compute the search direction:
Compute an optimal solution p(z*) and the op-
timal value 6(z*) as

p(a") = argmin(gradf (a"), B,/ (u))or +g(u) — g(2%),

0(a*) = (grad f(«*), R\ (w)ar + g(u) — g(a").

Define the search direction by d(z*) = R;kl (p(x*)).
Step 2. Compute the Step size:

Compute the step size \j.

Step 3. Update:

Update the current iterate

2F L = Rov (\ed(2)).

Step 4. Convergence check:
If a convergence criteria is met, stop; otherwise, set
k =k + 1 and return to Step 1.

In this work, we consider three types of step
sizes.

Armijo step size:

Let ( € (0,1) and 0 < wy < wy < 1. The step
size A is chosen according to the following line
search algorithm:

Step 0 Set A\r, = 1 and initialize ¢ < 0.

Step 1 If

F(Ryk (M d(2h))) < F(a) + (O 0("),

then set A\, := Ag, and return to the main al-
gorithm.

Step 2 Find Mg, , € [widg,,w2)p,], set £
£+ 1, and go to Step 1.

Adaptive step size:

Ar = min {1, —0(z*)/(LD?*(p (2*) ,2%))} =
argminye o 1) {)\G(xk) + %A2D2(p(ack), xk)} ,
where D(z,y) is the geodesic distance between z
and y and L is the smoothness constant of f.

Diminishing step size:

PV 2/(k + 2).

3. Convergence results

The convergence results are established as fol-
lows:

Theorem 1. Let z* be an optimal point of the
problem and {z*} be generated by Algorithm 1
with adaptive or diminishing step size. Assume
that f is L-smooth and g is geodesically conver.
Then {z*} satisfies F(z%) — F (z*) = O(1/k).
Theorem 2. Let {zF} be generated by Algo-
rithm 1 with the Armijo step size. Assume that
f is L-smooth and g is geodesically convex and
lower semicontinuous. Then limy_,.. 6 (:ck) =0
and every limit point x* € X of the sequence {x*}
18 a stationary point.
4. Solving subproblem

The subproblem
function min,ey (gradf (=), R

involves minimizing the
e (W)gr + g(u)
or equivalently min,er v (gradf(z®),n)x +
g(Rx(n)). Non-convexity may arise from the in-
verse retraction R;kl (u) and the composition with

g. To address this, define the function

o (77) = (gradf(a:k), 77>x’C + g(Rx’“ (77))

Follow the idea in [3], a local model £y, (&) is
defined as:

(T (rad f(2)).€) +gu+6).

where dj is the current estimate n;. The opti-
mization strategy involves finding a new estimate
by minimizing this local model in the tangent
space T, X to compute a search direction ;; and
then updating dj along this direction. This iter-
ative approach refines the descent direction and
moves toward the optimal solution.

5. Future works

Our future work will focus on developing and
analyzing an accelerated version of the Rieman-
nian GCG method. In addition, we plan to con-
duct numerical experiments to validate the effec-
tiveness of our proposed methods.
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