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1. Introduction

The Conditional Gradient (CG) Method, also
known as the Frank-Wolfe algorithm, is a fun-
damental technique in constrained optimization,
developed by Marguerite Frank and Philip Wolfe
in 1956. It is particularly useful for minimiz-
ing convex functions over complex convex con-
straint sets where projection is computationally
challenging. Recent explorations of CG method
on Riemannian manifolds [1] and the General-
ized Conditional Gradient (GCG) method have
been detailed in various studies [2]. Notably, the
GCG method’s application to composite multi-
objective optimization on Riemannian manifolds
has also been discussed, but the critical aspect
of solving subproblems remains underexplored.
This work investigates the GCG method on Rie-
mannian manifolds, focusing on three types of
step size and the implementation of subproblem
solutions.

2. The generalized conditional gradi-
ent method on Riemannian mani-
folds

We consider the following unconstrained vector
optimization problem:

min F (x) := f(x) + g(x)
s.t. x ∈ X , (1)

where X ⊆M is a compact and geodesically con-
vex set and F :M → R is a composite function
where f : M → R is continuously differentiable
and g :M → R is a proper, closed, geodesically
convex and lower semicontinuous (possibly non-
smooth) function with compact domain.
A Riemannian manifold M is a manifold en-

dowed with a Riemannian metric (ηx, σx) 7→
⟨ηx, σx⟩x ∈ R, where ηx and σx are tangent vec-
tors in the tangent space ofM at x. The tangent
space of a manifold M at x ∈ M is denoted as
TxM, and the tangent bundle ofM is denoted as
TM := {(x, d) | d ∈ TxM, x ∈M}. The norm of

η ∈ TxM is defined as ∥η∥x :=
√
⟨η, η⟩x. For a

map F :M→N between two manifoldsM and
N ,DF (x) : TxM → TF (x)N denotes the deriva-
tive of F at x ∈ M. The Riemannian gradient
gradf(x) of a function f :M → R at x ∈ M is
defined as a unique tangent vector at x satisfying
⟨gradf(x), η⟩x = Df(x)[η] for any η ∈ TxM.

In Euclidean space, the CG method method
aims to minimize a convex function f(x) over a
convex set X . At each iteration k, the method
solves a linear approximation of the original prob-
lem by finding a direction sk that minimizes the
linearized objective function over the constraint
set X :

sk = argmin
s∈X
⟨∇f(xk), s⟩.

Then, it updates the current point xk using a step
size λk along the direction sk − xk:

xk+1 = xk + λk(s
k − xk).

For composite functions of the form f(x) =
h(x) + g(x), where h is smooth and g is convex,
the CG method can be adapted to handle the
non-smooth term g. The update step becomes:

xk+1 = argmin
s∈X
⟨∇h(xk), s⟩+ g(s).

The step size λk can be chosen using various
strategies. The CG method is particularly use-
ful when the constraint set X is complex, mak-
ing projection-based methods computationally
expensive.
Compared to the update iterations in Eu-

clidean space, the process in the Riemannian set-
ting is generalized as

xk+1 = Rxk(λkd
k), for k = 0, 1, 2, . . . ,

where dk is a descent direction, λk is a step size,
and R is a retraction that projects points from
the tangent space of the manifold onto the man-
ifold itself.



Then we can give our algorithm.

Algorithm 1 Riemannian GCG method

Step 0. Initialization:
Choose x0 ∈ X and initialize k = 0.
Step 1. Compute the search direction:
Compute an optimal solution p(xk) and the op-
timal value θ(xk) as

p(xk) = argmin
u∈X
⟨gradf(xk), R−1

xk (u)⟩xk +g(u)−g(xk),

θ(xk) = ⟨gradf(xk), R−1
xk (u)⟩xk + g(u)− g(xk).

Define the search direction by d(xk) = R−1
xk (p(x

k)).
Step 2. Compute the Step size:
Compute the step size λk.
Step 3. Update:
Update the current iterate

xk+1 = Rxk(λkd(x
k)).

Step 4. Convergence check:
If a convergence criteria is met, stop; otherwise, set
k = k + 1 and return to Step 1.

In this work, we consider three types of step
sizes.

Armijo step size:

Let ζ ∈ (0, 1) and 0 < ω1 < ω2 < 1. The step
size λk is chosen according to the following line
search algorithm:

Step 0 Set λk0 = 1 and initialize ℓ← 0.

Step 1 If

F (Rxk(λkℓd(x
k))) ≤ F (xk) + ζλkℓθ(x

k),

then set λk := λkℓ and return to the main al-
gorithm.

Step 2 Find λkℓ+1
∈ [ω1λkℓ , ω2λkℓ ], set ℓ ←

ℓ+ 1, and go to Step 1.

Adaptive step size:

λk := min
{
1,−θ(xk)/(LD2(p

(
xk

)
, xk))

}
=

argminλ∈(0,1]
{
λθ(xk) + L

2 λ
2D2(p(xk), xk)

}
,

where D(x, y) is the geodesic distance between x
and y and L is the smoothness constant of f .

Diminishing step size:

λk := 2/(k + 2).

3. Convergence results

The convergence results are established as fol-
lows:

Theorem 1. Let x∗ be an optimal point of the
problem and {xk} be generated by Algorithm 1
with adaptive or diminishing step size. Assume
that f is L-smooth and g is geodesically convex.
Then {xk} satisfies F (xk)− F (x∗) = O(1/k).

Theorem 2. Let {xk} be generated by Algo-
rithm 1 with the Armijo step size. Assume that
f is L-smooth and g is geodesically convex and
lower semicontinuous. Then limk→∞ θ

(
xk

)
= 0

and every limit point x∗ ∈ X of the sequence {xk}
is a stationary point.

4. Solving subproblem
The subproblem involves minimizing the

function minu∈X ⟨gradf(xk), R−1
xk (u)⟩xk + g(u)

or equivalently minη∈T
xk

X ⟨gradf(xk), η⟩xk +
g(Rxk(η)). Non-convexity may arise from the in-
verse retraction R−1

xk (u) and the composition with
g. To address this, define the function

ℓxk(η) = ⟨gradf(xk), η⟩xk + g(Rxk(η)).

Follow the idea in [3], a local model ℓ̃yk(ξk) is
defined as:〈

T −♯
Rdk

(grad f(x)) , ξ
〉
yk

+ g (yk + ξ) ,

where dk is the current estimate ηk. The opti-
mization strategy involves finding a new estimate
by minimizing this local model in the tangent
space TykX to compute a search direction ξ∗k and
then updating dk along this direction. This iter-
ative approach refines the descent direction and
moves toward the optimal solution.

5. Future works
Our future work will focus on developing and

analyzing an accelerated version of the Rieman-
nian GCG method. In addition, we plan to con-
duct numerical experiments to validate the effec-
tiveness of our proposed methods.
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