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1. Introduction
Recently, many Riemannian conjugate gradi-

ent methods have been analyzed in [1]. More-
over, the nonlinear conjugate gradient method
for vector optimization was first proposed in [2].
Here, we propose a nonlinear conjugate gradi-
ent method for vector optimization on Rieman-
nian manifolds. We notice that a similar work,
that uses general retractions and vector trans-
ports but for multiobjective problems, was also
done in [4]. They establish the convergence of
the algorithm for the Fletcher–Reeves (FR) and
Dai–Yuan (DY) parameters with the correspond-
ing sufficient descent condition and a desired in-
equality. We do not rely on satisfying these con-
ditions. Instead, we demonstrate that our algo-
rithm can obtain descent directions and establish
its convergence not only under FR and DY but
also conjugate descent (CD) parameters.
2. Nonlinear vector Riemannian con-

jugate gradient method
We consider the following unconstrained vector

optimization problem:

minK F (x)
s.t. x ∈M,

(1)

where F : M → Rm is continuously differen-
tiable, M is an n-dimensional smooth Rieman-
nian manifold and K ⊂ Rm is a closed, convex,
and pointed (i.e., K ∩ (−K) = {0}) cone with a
nonempty interior. A Riemannian manifold M
is a manifold endowed with a Riemannian metric
(ηx, σx) 7→ 〈ηx, σx〉x ∈ R, where ηx and σx are
tangent vectors in the tangent space ofM at x.
The tangent space of a manifoldM at x ∈M is
denoted as TxM, and the tangent bundle of M
is denoted as TM := {(x, d) | d ∈ TxM, x ∈M}.
The norm of η ∈ TxM is defined as ‖η‖x :=√
〈η, η〉x. For a map F : M → N between two

manifolds M and N ,DF (x) : TxM → TF (x)N
denotes the derivative of F at x ∈M.

Now, consider the extension of the notion
of the steepest descent direction to the vector-
valued case. We denote it as v : Rn → Rn and
define it as

v(x) := argmind

{
φ(DF (x)d) +

‖d‖2

2

∣∣∣∣ d ∈ Rn

}
.

(2)
Here φ(DF (x)d) = sup{[DF (x)d]Tw | w ∈ C},
where C = {ω ∈ K∗ | ‖ω‖ = 1}, ·T denotes
transpose, and K∗ is the dual cone of K.

Assume that we have an iterative method gen-
erating iterates {xk}. In Euclidean spaces, the
update takes the form xk+1 = xk + tkdk, while in
the Riemannian case it is generalized as xk+1 =
Rxk

(tkdk), for k = 0, 1, 2, . . . , where dk is a de-
scent direction, tk is a step size, and R is a retrac-
tion that project points from the tangent space
of the manifold onto the manifold itself.

In the Euclidean case, the search direction of
the nonlinear vector conjugate gradient method
is given by dk+1 = v (xk+1) + βk+1dk, for k ≥ 0,
where βk+1 ∈ R is a parameter. To extend it to
the Riemannian case, we use a vector transport
called the differentiated retraction [1]. Using T k :
Txk
M → Txk+1

M with T k(dk) := T R
tkdk

(dk) =
DRxk

(tkdk) [dk], we have

dk+1 = v (xk+1) + βk+1T k(dk). (3)

In order to get a proper decrease, we extend
Wolfe conditions to vector optimization on Rie-
mannian manifolds. Let e ∈ K be given such
that 0 < 〈ω, e〉 ≤ 1 for all ω ∈ C. Letting
0 < c1 < c2 < 1 and e = [1, . . . , 1]T ∈ Rm, we
propose the (weak) Wolfe conditions as follows:

F (Rxk
(tkdk)) �K F (xk) + c1tkφ (DF (xk)[dk]) e,

(4)

φ (DF (Rxk
(tkdk))[DRxk

(tkdk) [dk]])

≥ c2φ (DF (xk)[dk]), (5)



and the strong Wolfe conditions are given by (4),
together with

|φ (DF (Rxk
(tkdk))[DRxk

(tkdk) [dk]]) |
≤ c2|φ (DF (xk)[dk]) |. (6)

Then we can give our algorithm.

Algorithm 1 Nonlinear vector Riemannian con-
jugate gradient method (NVRCG)
Step 0. Let x0 ∈M and initialize k ← 0.
Step 1. Compute v (xk) as in (2). If v (xk) = 0,
then stop.
Step 2. Compute

dk =

{
v (xk) , if k = 0,

v (xk) + βkT k−1(dk−1), if k ≥ 1,

where βk is an algorithmic parameter.
Step 3. Compute a step size tk > 0 by a line
search procedure and set xk+1 = Rxk

(tkdk).
Step 4. Set k ← k + 1, and go to Step 1.

3. Convergence analysis

We extend Zoutendjik’s type condition to Rie-
mannian manifolds and analyze the convergence
of the NVRCG method with the Riemannian ex-
tensions of FR, CD, and DY parameters.
First we give the Lipschitz-like continuity

for vector optimization on Riemannian mani-
folds: For all x ∈ M, d ∈ TxM with ‖d‖ =
1, t ≥ 0, there exist constant L > 0 such that
‖D(F ◦Rx) (td)[d]−D(F ◦Rx) (0)[d]‖ ≤ Lt.
Assume this condition holds and consider the

iteration, where dk is a K-descent direction for F
at xk and tk satisfies the Wolfe conditions. Then,
we have

∑
k≥0

φ2 (DF (xk)[dk])

‖dk‖2
<∞,

which is an extension of standard Zoutendijk’s
condition.
Here, we extend FR, CD and DY parameters

to vector optimization on Riemannian manifolds

as follows:

βFRk =
ψxk,vk(0)

ψxk−1,vk−1
(0)

, (7)

βCD
k =

ψxk,vk(0)

ψxk−1,dk−1
(0)

, (8)

βDY
k =

−ψxk,vk(0)

ψxk−1,dk−1
(tk−1dk−1)− ψxk−1,dk−1

(0)
.

(9)

Under strong Wolfe conditions, we can prove
that dk generated by (3) with CD or DY pa-
rameter is a descent direction satisfying some in-
equality. For FR parameter, we get the same re-
sult by adding an additional restriction on c2 of
strong Wolfe conditions. According to the above
results, we have proved that if 0 ≤ βk ≤ βFRk

and tk satisfies the strong Wolfe conditions, then
lim infk→∞ ‖v (xk)‖ = 0. We can get the same re-
sult for βCD and βDY. Moreover, the PRP-, HS-,
and LS-type hybrid scheme of conjugate gradient
methods to generate descent directions are also
discussed in our work.
Theorem 1. Each accumulation point of the se-
quence {xk} generated by Algorithm 1, if exists,
is a Pareto stationary point.
4. Numerical experiments
The results of the numerical experiments will

be presented on the presentation day of the con-
ference.
5. Future works
For future work, the convergence with the ex-

act PRP, HS, and LS parameters will be dis-
cussed. Additionally, an analysis of the conver-
gence rate will be conducted.
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